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The prediction of spatially periodic �ows using
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SUMMARY

A periodic boundary condition has been developed that can be used in conjunction with a speci�ed �ow
rate to produce accurate results in spatially periodic geometries. This condition is useful in situations
where the �ow rate is known, or more importantly, in cases where the pressure gradient is not known
a priori, such as in countercurrent �ows. Using the present condition, the �ow rate is imposed at the
inlet in terms of a bulk velocity, but the velocity �eld evolves as part of the solution. The condition is
formulated to be suitable for both �xed and moving periodic domains. For the case of a moving domain,
a correction is introduced to account for changes in the instantaneous velocity through the periodic edges.
Under periodic conditions, these corrections integrate to zero over a complete (temporal) period. The
new periodic condition is shown to produce accurate results for �at and wavy-walled channels under
both induced �ow and countercurrent conditions. Copyright ? 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In computational �uid dynamics (CFD), it is often necessary to reduce the physical extent
of a computational domain to make problems practical to solve. While this process relies
somewhat on the creativity of the user, it is more often reliant on the capability of the CFD
code in terms of boundary conditions. In many practical situations, it is possible to reduce
the physical domain into a representative spatially periodic section. Examples of such �ows
include tube bundles in heat exchangers, blade passages in turbomachines, wavy tubes and
channels, and wavy surface driven �ows. In these cases, either open or periodic boundary
conditions must be employed on the periodic edges of the domain. The �ows of central
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interest in the present work are surface-driven, countercurrent �ows in which a shear-driven
surface layer is opposed by a pressure-driven lower layer yielding a zero net mass �ux.
This �ow serves as a model to describe the �ow in closed basins of water driven by wind.
Depending on the surface conditions, a countercurrent �ow results that is driven by either a
smooth or wavy upper surface.
The use of periodic boundary conditions is not new. In fact, all commercially available

CFD codes have some form of periodic, open or combined condition for domain boundaries.
While there is no standard method for implementing these conditions, Sani and Gresho [1]
suggest the qualities that such conditions should possess: they should permit both the �ow and
anything it carries to exit the domain gracefully and passively and not have any e�ect on
the behaviour of the solution in the domain near the open boundary (and especially far from
it); they should be transparent; they should lead to the same solution inside the common
domain no matter where truncation occurred. These qualities are accompanied by a series
of mathematical constraints that are felt to ensure satisfaction of the above characteristics.
While such qualities are desirable, it is not always practical to expect all such conditions to
be perfectly satis�ed. Progress in the development of periodic or open boundary conditions
must also be measured in terms of extensions that lead to increased modelling capability and
elucidation on physics. All extensions can be considered useful provided the user is aware of
the approximations inherent in the conditions used.
Recently, Nicolas et al. [2] compared �ve di�erent types of open and periodic boundary

conditions in the computation of Poiseuille–B�enard channel �ow. This is essentially a mixed-
convection �ow in a horizontal channel heated from below. For the two-dimensional case,
the �ow consists of a series of contra-rotative rolls �owing through the domain. The results
showed good �ow behaviour when Orlanski-type [3] open boundary conditions were used,
but other types of open conditions were found to be unstable. They also found that the use
of periodic boundary conditions gave excellent results and allowed for further reductions in
the size of the computational domain over that required for convergence of the same problem
using open conditions. The condition used required the imposition of a constant pressure
gradient to induce a �ow through the domain. While this type of condition is suitable for
many situations, in cases where the �ow rate is known, such as in a wavy tube or channel,
it would be more convenient to impose the mass �ow directly at the periodic boundary and
allow the pressure �eld to evolve as part of the solution. Furthermore, in countercurrent �ows,
the pressure gradient is not known a priori so a periodic condition that imposes the mass
�ow rate is necessary. It is noted that some commercial CFD packages do allow the user
to specify either a periodic pressure drop or a mass �ux in combination with a periodic
boundary condition. However, numerically both conditions are handled using some variant of
the pressure-gradient approach described above. That is, if a mass �ux is speci�ed, a pressure
drop is guessed and then systematically varied until the mass �ux reaches the desired value
to within some numerical tolerance.
In the present study, a unique periodic condition is developed for use in modelling spatially

periodic �ows. As discussed above, the �ows of central interest are spatially periodic, coun-
tercurrent �ows such as those observed in closed surface-driven bodies of water. The periodic
condition includes the imposition of a net mass �ow (which is zero for counter-current �ows)
through the periodic boundaries. Further, the condition is formulated to accommodate wavy-
driven-surfaces for which the size of the periodic boundaries change with time. This periodic
condition is useful not only in countercurrent �ows, but also in �ows where it is desirable
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to specify the mass �ux across a periodic boundary without �xing the velocity pro�le. A
unique implementation for the developed condition is presented that is shown to be extremely
useful for the prediction of several types of spatially periodic �ows in which the �ow is either
pressure driven or surface induced. The boundary conditions are implemented into a �nite-
volume algorithm that utilizes an adaptive, moving grid formulation. Subsequent sections of
the paper describe the governing equations and numerical formulation, the development and
implementation of the boundary conditions, and validation of the periodic condition by com-
puting the �ow through smooth and wavy channels and fully developed countercurrent �ow
with a smooth or wavy upper surface.

2. GOVERNING EQUATIONS AND NUMERICAL FORMULATION

Predictions of incompressible, Newtonian, laminar �ow are obtained by solving the conserva-
tion of mass and momentum equations in the form

@�
@t
+ (�Ui); i=0 (1)

and

@
@t
(�Ui) + (�UkUi); k = − P; i + �(Ui; k); k (2)

where Ui is the �uid velocity in the xi direction, P is the pressure, and � and � are the �uid
density and dynamic viscosity, respectively.
The transport equations are solved numerically using the structured �nite-volume approach

described by Patankar [4], except with a collocated variable arrangement. (Extensions for
the adaptive grid formulation are described in Reference [5] and are not repeated here.)
Application of this procedure results in a series of discrete algebraic equations that take the
form

a�P�P=
∑
a�nb�nb + b

�
P (3)

in which the a� terms are the active coe�cients on �; � represents any dependent variable,
and nb implies summation over the neighbouring nodes. For the method adopted in this work,
only neighbouring nodes that share a face with the volume under consideration are included
implicitly in the numerical formulation. As such, the neighbouring nodes are those to the
west, W; east, E; south, S; and north, N; of P for two-dimensional computations. Figure
1 illustrates the grid con�guration and shows the indices used to describe the extent of the
domain. Using this con�guration, (ib; jb) denotes the �rst interior control volume and (ie; je)
denotes the last interior control volume. Boundary conditions are required over the jb−1; je+
1; ib− 1 and ie+ 1 edges of the domain.
The mass and momentum equations are solved as a coupled set and thus, no semi-implicit

technique (e.g. SIMPLE) is required to maintain the coupling between the mass and momen-
tum equations. Thus, for the mass and momentum set, Equation (3) is recast as

AP{�}P=
∑

Anb{�}nb +BP (4)
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Figure 1. Con�guration of a typical grid showing the co-ordinate system and the grid indices.

where the A terms are now 3× 3 matrices of active coe�cients, {�} is a 3× 1 vector of
components P;U1 and U2, and BP is a 3× 1 vector of source terms. Despite the direct,
implicit coupling between the mass and momentum equations, there still exists the possibility
of checker-board solutions of pressure and velocity being accepted as smooth. To remove this
possibility, the fourth-order pressure smoothing technique originally proposed by Rhie and
Chow [6] has been implemented.
Convective �uxes in the transport equations were discretized using the central di�erence

scheme (CDS). This scheme is second-order accurate and was implemented using the deferred
correction approach described in Reference [5], whereby the convection through the east face,
for example, is written as

Fe=FUDSe + (FHOSe − FUDSe )m−1 (5)

In Equation (5), FUDSe is the convective �ux evaluated using the �rst-order upstream di�er-
encing scheme (UDS) and FHOSe is the �ux evaluated using the higher-order scheme. Using
this approach, the UDS �ux is treated implicitly and the terms in parenthesis are evaluated
from the previous iteration and summed into the source terms as a deferred correction. In
this manner, there exists no possibility for the active coe�cients to become negative in the
iterative procedure and the converged solution is second-order accurate. The discrete equations
were solved using the semi-implicit block solver WATsitB [7]. The coupled mass-momentum
set was formed into blocks and solved simultaneously.

3. THE PERIODIC BOUNDARY CONDITION

Consider the two di�erent domains shown in Figure 2. If the left and right edges of domains
(a) and (b) are open at ±∞ and the upper and lower surfaces are �xed, then with �uid
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Figure 2. Schematics of the two geometries considered in the present work. Geometry (a) represents a
plane channel when both surfaces are �xed and smooth countercurrent �ow when the upper surface is
moving. Geometry (b) represents a wavy channel when both surfaces are �xed and wavy countercurrent

�ow when the upper surface is moving.

motion in the x1 direction, domain (a) would produce plane channel �ow and domain (b)
would produce spatially periodic, channel �ow. If the left and right edges are closed at ±∞
and the upper surface is in motion while the lower surface is �xed, then domain (a) would
produce fully developed countercurrent �ow and domain (b) would produce spatially periodic
countercurrent �ow. Note that in domain (b), the �ow is quite di�erent if the lower surface
moves while �xing the upper surface. In all cases, the �ow produced is spatially periodic in
nature (for the �at upper surface, the �ows are more often described as fully developed). To
compute these �ows, no-slip=zero-penetration conditions are imposed on the upper and lower
surfaces and the pressure on these surfaces is extrapolated from within the domain. In both
domains, and for all �ows considered, the periodic boundaries are the left and right edges of
the domain.
The con�guration required for the periodic boundary condition developed herein is similar to

that described in Nicolas et al. [2], i.e. the periodic domain is reduced to two complete periods,
as shown in Figure 2(b). For the case of �at upper and lower surfaces, the length of the domain
is inconsequential, but, a certain minimum number of volumes must be used to accommodate
the periodic conditions, as will be made evident below. In Nicolas’ implementation of the
periodic boundary condition, the �ow was induced through the channel by imposing a constant
pressure gradient between the inlet and exit boundaries of the channel. While this condition is
suitable in channel �ow, it is not appropriate for countercurrent �ows where the structure is
established by a shear-driven layer opposing a pressure-driven layer. In the present work, the
�ow rate is imposed across the inlet boundary in terms of velocity, and the pressure level is
speci�ed across the outlet boundary. The velocity and pressure �elds are allowed to develop
as part of the solution. The shape of the inlet velocity pro�le is obtained from the outlet
boundary and the shape of the pressure pro�le is obtained from the middle section of the
domain. Figure 3 shows the transfer of information used in the imposition of the periodic
boundary condition. The exact implementation of the boundary conditions and the transfer of
information are described below.
At the outlet of the domain, the condition on the U1 velocity component is obtained from

the conservation of mass equation. The U1 velocity can be solved discretely to give

(U1)ie+1; j=(U1)ie; j −�x1 dU2dx2

∣
∣
∣
∣
ie; j

(6)
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Figure 3. Schematic showing the imposition of the periodic boundary condition
and the transfer of information.

When the gradient term vanishes, as in fully developed �ows, the condition relaxes to the
commonly used zero-gradient condition. While the zero-gradient condition is typically more
robust, the correction from the mass equation allows for �ow development at the domain
outlet and is thus, more accurate in cases where the domain is irregular and the �ow is not
fully developed. In terms of the active coe�cients on the boundary nodes, the outlet boundary
condition on U1 is implemented as

aP(ie+ 1; j) = 1:0

aW(ie+ 1; j) = 1:0

aE(ie+ 1; j) = 0:0

aS(ie+ 1; j) = 0:0

aN(ie+ 1; j) = 0:0

b(ie+ 1; j) =−�x1(dU2=dx2)|ie; j

where �x1 is the horizontal distance between nodes (ie; j) and (ie+1; j), and −(dU2=dx2)|ie; j
is obtained by integration over the faces of the volume centred at (ie; j) (as described in
Reference [5]).
For the U2 velocity at the outlet, information is transferred from the middle section of the

domain. In this manner, the velocity �eld at the outlet is not restricted in any way. For cases
where the velocity gradients are small, it may also be suitable to employ a zero-gradient
condition, which leads to U2(ie + 1; j)≈U2(ie; j) across the outlet. The outlet condition on
U2 is implemented similar to that described above for U1.
Information on U1 and U2 from the outlet boundary are then transferred face by face to the

inlet and corrected to maintain the desired mass �ow rate. The correction on the U1 velocity
is obtained by computing the integrated �ow rate across the outlet

Q̇=
je∑

j=jb
(U1)ie+1; jCeie; j (7)
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and then the bulk velocity

Ub=
Q̇

∑je
j=jb C

e
ie; j

(8)

where Ceie; j is the area of the east face of the control-volume centred at (ie; j). At the inlet,
this condition is implemented discretely into the U1 equation as

aP(ib− 1; j) = 1:0
aW(ib− 1; j) = 0:0
aE(ib− 1; j) = 0:0
aS(ib− 1; j) = 0:0
aN(ib− 1; j) = 0:0
b(ib− 1; j) =U1(ie+ 1; j) + (Udesired −Ub)

Because of the conservative nature of the �nite-volume method, the bulk velocity is always
close to Udesired and thus, the correction is always small. The correction is essentially a mech-
anism to avoid having the imposed velocity change as a result of accumulated numerical
errors. Again, the implementation for the U2 velocity is similar except that no correction for
�ow is necessary. As such, the U2 velocity is simply transferred from the outlet to the inlet.
Upon convergence, the inlet and outlet pro�les for both U1 and U2 are identical, to satisfy
the periodic condition. As will be seen, this implementation is extremely robust and results in
accurate solutions for all of the �ows considered in this study. It is also noted that the present
condition is not sensitive to the positioning of the periodic boundaries, i.e. the boundaries can
be placed in regions of developing and recirculating �ow without loss of accuracy, as will be
seen in the forthcoming validations.
The implementation for the condition on pressure is similar to that described above. Infor-

mation is transferred from the center section of the domain to obtain the shape of the pressure
pro�le. The average pressure is obtained as

Pave =

∑je
j=jb 0:5(Pic; j + Pic+1; j)C

e
ic; j

je∑

j=jb
Ceic; j

(9)

where Pave is the average pressure required to apply the same force over the centre section of
the domain and ic is the i index of the volumes adjacent to (and left of) the centreline of the
domain. As indicated, the pressure is �rst interpolated to the face and then multiplied by the
area to obtain the component force. The pressure pro�le is then transferred to the outlet of
the domain and corrected to yield the desired average pressure across the outlet. Discretely,
this is implemented as

aP(ie+ 1; j) = 1:0

aW(ie+ 1; j) = 0:0
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aE(ie+ 1; j) = 0:0

aS(ie+ 1; j) = 0:0

aN(ie+ 1; j) = 0:0

b(ie+ 1; j) = 0:5 ∗ (P(ic; j) + P(ic+ 1; j)) + (Pdesired − Pave)

At the inlet of the domain, the pressure is simply extrapolated, as is done for the solid walls.
Upon convergence, the x2 variation of pressure is virtually identical at the inlet, the centre
and the outlet, but they are shifted to yield the appropriate overall pressure gradient required
to drive the desired mass �ow.
The conditions described above are suitable for all cases where the domain boundaries

are �xed, or in motion but �at. For the case of a wavy, moving surface, the size of the
inlet and outlet boundaries changes with time so, in general, the applied conditions must also
change. Note however, that at all instants in time the inlet and outlet remain exactly periodic.
Figure 2(b) shows a wavy-walled channel for which the upper surface is described by

�(x1; t)=A cos[k(x1 − ct)] (10)

where �(x1; t) oscillates about the mean depth level h. In Equation (10), A is the amplitude
about the mean depth level, k=2�=� is the wave number, � is the wavelength, c is the wave
speed and t is time. In simulating this case, the upper and lower surfaces are modelled as
smooth walls and thus no-slip, zero-penetration conditions must be imposed on the velocity
components. Since the upper surface moves at c, following Equation (10), the horizontal
velocity on this surface takes the value U1 = c. If the upper surface is considered solid, the
U2 velocity can be devised intuitively as U2 = 0. The same result arises if the upper surface
is considered to be a free-surface wave travelling at c with a particle drift velocity U1 = c.
For this case, the kinematic condition is

U2 =
@�
@t
+
@�
@x1

U1

which also yields U2 = 0.
The periodic conditions on the left and right edges of the domain are implemented as

described above, except with a correction on the horizontal velocity to account for the temporal
variation of the edges. The fact that a correction is necessary is easily seen in Figure 4, which
shows one spatial period of the domain at an arbitrary instant in time. The dashed line in
part (a) of the �gure represents a control-volume over which a mass balance can be taken.
Figure 4(b) shows the stated control-volume with all of the mass �uxes to be considered.
Assuming a unit depth, the mass �uxes over the faces of the control-volume can be computed.
Since the left boundary of the control-volume passes through the mean depth level, ṁ1 = 0.
The mass �ux through the lower boundary is also ṁ4 = 0. The mass �ux through the upper
boundary for any instant in time can be obtained as

ṁ3 =
∑

i
(�c)Cni; jenx (11)

where Cni; je is the area of the north face of a cell centred at (i; je) and nx is the horizontal
component of the unit normal vector for the Cn face. Since c=Us, summation over the
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Figure 4. Schematic showing the mass �ux correction required in cases where the physical
boundary changes as a function of time.

upper face yields

ṁ3 =�Us�(x1;o; t) (12)

where �(x1;o; t) is the surface position with respect to the mean depth level at the domain
outlet. The mass �ux through the outlet boundary, ṁ2, is not known and must be found from
a mass balance over the control-volume, which yields

ṁ2 = ṁ3 =�Us�(x1;o; t) (13)

Based on Equations (12) and (13), it is evident that if a complete period is considered, the
mass �ux through the right boundary is exactly zero. It is also noted that Equation (13) is
valid independent of where the left edge of the control-volume is positioned because the slight
non-zero mass �ux through the left edge is balanced by the additional mass �ux through the
upper boundary. The instantaneous bulk velocity through the outlet (right edge) of the domain
is then obtained from

Ubm=
ṁ2

�
∑je

j=jb C
e
ie; j

=Us
�(x1;o; t)

h+ �(x1;o; t)
(14)

It is easily shown that Ubm satis�es the physical condition that the corrected mass �ow must
integrate to zero over one (or several) complete periods. In terms of the implementation, Ubm
simply replaces Ub in the source term b; no additional changes are required. The solution
for the case with a moving, wavy upper surface must be obtained as a transient calculation.
As such, the grid is modi�ed at the start of a time step, followed by a calculation of Ubm,
which is then �xed for that time increment. The solution is obtained for this condition before
advancing to the next time level. Validation of the periodic boundary condition is carried out
in the next section for both steady and transient cases.

4. VALIDATION

To validate the periodic condition developed in the present work, computations are pre-
sented for the four cases described at the beginning of the previous section, i.e. the �at and
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Figure 5. The horizontal velocity, U1=U0 plotted as a function of x2=h at three
positions for the smooth, channel �ow.

wavy-walled channels and the �at and wavy surface-driven countercurrent �ows. For consis-
tency, the computational domain for all cases was nominally 2�× h in the x1 and x2 directions,
respectively, where �=0:132 m and h=0:102 m. For the wavy upper surface, the amplitude
was set to A=0:01 m. Computations for all cases were conducted on computational mesh
sizes ranging from 60× 20 to 240× 80 in the x1 and x2 directions, respectively, to ensure
that solutions were grid independent. At the highest mesh density, all solutions were spa-
tially accurate to much better than 1% based on velocity pro�les and axial pressure drops.
In addition, for the driven wavy surface, a time-step independence study was conducted to
ensure that the reported results were not dependent on the time-step size chosen. Using a
dimensionless time-step size of �t=T =0:066, which corresponds to 200 steps per period, and
a three-time-level discretization scheme, the temporal results were independent to better than
1%. For all cases, only laminar �ow was considered.
Plane channel �ow was computed for a Reynolds number Re=U0h=�=1000, where U0 is

the mean velocity, h is the channel width and � is the �uid kinematic viscosity. While cases
were computed for several other Re in the laminar regime, results are only presented here for
Re=1000. The left and right edges of the domain were assumed periodic with an induced �ow
rate Q̇=U0h, and hence Udesired =U0. The computations were initiated with U1 =U0; U2 = 0
and P=0 throughout the domain. The results for the U1 velocity are shown as a function
of x2 in Figure 5 along with the exact, analytical result. The normalized solutions for three
positions in the domain are shown to be coincident with each other and with the exact result,
indicating the accuracy of the computed results. Pressure variations (not shown) were also
predicted to be coincident with the exact solution in terms of vertical distribution and axial
pressure drop, again indicating the accuracy of the solution and the conditions used.
Calculations of �ow through a channel with a wavy upper wall were also performed for a

Reynolds number Re=U0h=�=1000. Boundary and initial conditions were set to be the same
as those used for the plane channel with a �at upper surface. Figure 6(a) shows computed
streamlines to give a qualitative picture of the �ow �eld. It is evident from the �gure that
the �ow is essentially channel like, except with recirculating regions that form beneath the
crests of the wavy wall, as might be expected. To con�rm the periodicity of the �ow, results
for the U1 velocity are shown in Figure 6(b) for �ve positions along one period of the wavy
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Figure 6. Streamlines (a) and U1 velocity pro�les (b) for the case of channel �ow with a wavy upper
surface at Re=1000. In plot (b), the velocity scale is the lower abscissa and the scale showing the
position of the pro�les is the upper abscissa. The dashed lines represent pro�les from the �rst periodic
section while the solid lines represent the same spatial positions in the second spatially periodic section.

channel. In the �gure, the solid lines represent the pro�les from the �rst spatial period while
the dashed lines represent the spatially similar pro�le from the second spatial period. The
predicted velocities are shown to be coincident at all positions demonstrating the periodicity
of the �ow and the validity of the periodic condition. The velocity pro�les also con�rm
the channel-like structure of the �ow, and show the magnitude of the recirculation beneath
the crests. The pressure variation along the axis of the channel is shown in Figure 7. The
pressure at each axial position is the area-weighted average pressure over that section and is
normalized by the dynamic pressure, 1

2�U
2
0 . The solid line represents the variation through

the �rst periodic section and the dashed line represents the same variation in the second
periodic section, shifted to coincide with that from the �rst section. The overall pressure drop
through each section is seen to be virtually identical; however, small deviations do occur
under the wave crests from section to section. The deviations do not appear to a�ect the
velocity �eld and are likely a result of grid resolution. Overall, the results from the wavy-
walled channel are seen to be extremely well predicted using the periodic boundary condition.
A full, parametric study of wavy-walled channels conducted using a perturbation method and
the boundary condition developed herein is given in Zhou et al. [8].
The countercurrent �ow cases were computed for several Reynolds numbers, however again,

in the interest of brevity, results are only reported here for Re=Ush=�=1000, where Us is the
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Figure 8. The horizontal velocity, U1=Us plotted as a function of x2=h at three positions for countercurrent
�ow driven by a smooth upper surface.

surface speed. A full parametric study of countercurrent �ows is considered for future work,
but is beyond the scope of the present paper. Since both geometric cases represent countercur-
rent �ow, the periodic conditions include Udesired = 0, i.e. the result is a shear-driven surface
layer opposed by a pressure-driven lower layer. The computations for both geometries were
initiated with U1 =U2 =P=0, with a surface speed Us. Results for countercurrent �ow with a
�at upper surface are given in Figure 8. The �gure shows the predicted U1 velocity pro�le as
a function of x2 for three di�erent sections of the domain along with the analytical solution for
laminar, countercurrent �ow. The velocity pro�les are seen to be virtually indistinguishable,
indicating the accuracy of the solution and the validity of the boundary conditions used. While
not shown, the axial pressure variation was computed to within 0.2% of the exact solution.
The moving, wavy-surface case was run as a transient calculation using a three-time-level

method. Computations were run for 10 complete periods to remove cycle-to-cycle variations.
The time-periodic results are shown in Figure 9(a)–(d). Figure 9 shows velocity pro�les and
streamline plots for four evenly spaced time intervals, t=T =0; 0:25; 0:5 and 0.75. Clearly, the
�ow is fully quanti�ed by any one plot, since the �ow is stationary with respect to a reference
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Figure 9. Velocity pro�les and streamlines for countercurrent �ow driven by a wavy upper surface.
Results are shown for four equally spaced time intervals as indicated in (a) through (d). Velocity

pro�les are shown for �ve positions along one period of the wavy domain.
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frame travelling at the speed of the waves. However, the series of plots given in Figure 9
serve to illustrate the motion of the underlying �ow structures for an Eulerian observer. The
streamline plots illustrate qualitatively the countercurrent �ow �eld produced by the moving,
wavy surface. The plots indicate that the �uid under the wave crests travels at the speed of
the waves. This �ow is opposed by a countercurrent �ow moving opposite the wave direction
along the lower surface of the domain. Because of the height variation along the �uid domain,
recirculation regions form between the opposing layers of �uid. These recirculating regions
travel at the wave speed (when c=US) and are spatially periodic with the wave, although
slightly o�set from the wave crests. The �ow structure is similar in character to that described
by Sullivan et al. [9] in their computations of uncon�ned air�ow over idealized waves. The
plots of the horizontal velocity quantify the structure of the countercurrent �ow over space
and time. The structure is very similar to that generated by a �at moving surface except near
the surface where the wave crests trap �uid and drag it along at the surface speed. This
is made evident by the �atness of the velocity pro�les beneath the wave crests. All of the
velocity plots show virtually identical behaviour at the beginning and end of a spatial period,
illustrating the periodicity of the �ow and the accuracy of the periodic boundary conditions.
The plots also implicitly illustrate that the solution is completely insensitive to the position
of the periodic boundaries.

5. SUMMARY

A periodic boundary condition has been developed that can be used in conjunction with
a speci�ed �ow rate to produce results in spatially periodic geometries. The �ow rate is
imposed at the inlet in terms of a bulk velocity, but the velocity pro�le evolves as part of
the solution �eld. The periodic condition was shown to produce realistic results for �at and
wavy-walled channels under both induced and countercurrent conditions. This condition is
particularly useful in cases where the �ow rate is known, or in cases where the pressure
gradient across a spatial period is not known a priori, such as in countercurrent �ows. While
not shown in this paper, the periodic condition can be easily extended to three dimensions
and include turbulence and scalar transport.
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